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Abstract. By enumerating irreducible bridges exactly up to 40 steps, and by obtaining n lower 
bound to the number of bridges with less than 125 steps, a lower bound for the connective 
constant for square lattice self-avoiding wdks of 2.62 is obtained. 

1. Introduction 

The first study of the lower~bound on the connective constant of square lattice self-avoiding 
walks was by Wakefield, in 1951 [l], and was followed in 1959 by better bounds obtained 
by Fisher and Sykes [2]. In 1963 Kesten [3] proved a result that allows lower bounds 
to be established, provided the number of graphs known as irreducible bridges is known. 
This result was used by Beyer and Wells [4] in 1972 to obtain a better lower bound, which 
was improved by Guttmann [5] in 1983. This gave @ > 2.568, a result that was recently 
substantially improved by Alm [6], who proved that p > 1.601 774. In this paper we have 
improved on this bound, and show that p > 2.62, which is less than 0.7% below the best 
numerical estimate [7] of 2.638 15853. 

An n-step self-avoiding walk (SAW) is a non-cyclic continuous path connecting 11 + 1 
adjacent vertices on a lattice. If c, denotes the number of n-step SAWS per lattice site, 
then we define the connective constant. usually denoted /L, by lim,,+m In(c.)/n = p. The 
existence of this limit was proved [XI in 1954. 

For the ease of visualization, we will restrict our subsequent discussion to SAWS on the 
square lattice, with walk steps in directions parallel to the lattice axes. Terminally attached 
walks (TAWS) are SAWS whose first step is along the positive x-axis, and which subsequently 
never have x co-ordinate less than that of the end-point of the first step. That is to say, the 
origin is the unique left-most point of the walk. We next define bridges as TAWS whose 
end-point has x coordinate equal to the maximal x coordinate. Then irreducible bridges 
are defined to  be^ bridges which cannot be decomposed into two concatenated bridges. Thus 
irreducible bridges must have at least three horizontal bonds for each (x, x + 1) segment 
except the first. See figure 1 for examples. Clearly, each class defined is a subset of the 
previous class. What is less obvious, though is proved in [5], is that the connective constant 
for all classes is the same as for unconstrained SAWS. 
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ci? 

Figure 1. Example of two irreducible bridges (left) 
and the reducible bridge caused by concatenating them 
(right). 

2. Calculation of lower bound 

The method used to establish the new lower bound is the same as that used in [SI, and 
is based upon an observation of Kesten [3]. The generating function for reducible bridges 
N ( x )  = bnxn is related to the generating function for irreducible bridges A(x)  = C s , x "  
by N ( x )  = [l - A(x)]-~.  As both N ( x )  and A(x)  have the same radius of convergence, 
l / p ,  it follows [3] that the solution of h ( x )  =~ 1 is x = I/+ A corollary [3] is that a lower 
bound for the connective constant p for SAWs is given by the unique positive root p~ of 
the equation 

Since s,, > 0 for all n, the roots p~ form an increasing sequence and satisfy W N  < p. Here 
s, is the number of irreducible bridges of n steps. 

Note that for p~ > 0, f N ( & V )  is a strictly monotonically decreasing function for N > 0, 
as sn > 0 for n > 0. Furthermore, fN(p.N) will drop from 03 to 0 as p~ varies from 0 to 
00, and f , + l ( x )  > f ~ ( x )  for x > 0, N > 0. This means that p ~ + 1  p~ for N > 0. If 
there is another function gN(x )  which also decreases monotonically like f~(x), and which 
satisfies f , ( x )  2 g N ( X ) .  then the positive solution of 

g N ( F N )  = 1 (2.2) 

will have 

E N  S W N  < P. (2.3) 

If gN(x) is defined by 

(2.4) 

where 0 c S, f s,, for n > 0, then this clearly is a suitable function. A useful choice for 
S,, is the number of irreducible bridges of width no more than W (or a lower bound on this 
number). This clearly satisfies 0 c S, < s., and has the advantage that this series can, in 
principle, be evaluated exactly by using a transfer matrix. 

In practice, evaluating this exactly for large W is a difficult task, as the (square) transfer 
matrix'has side length growing like 3w. An alternative is to count values of S,, on a finite 
matrix, as was done in [7] to count SAWs on a square lattice to 39 steps. A similar method 
and algorithm is used here, and is described in section 3. 
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In summary, to obtain a lower bound pN we calculate a lower bound for the number of 
irreducible bridges of length n and less to.get SI to SN, and then PN is the positive solution 
to: 

3. Method of counting 

All walks on a rectangular grid W units wide and L units long subject to certain boundary 
conditions can be counted by using the transfer matrix method described in detail in 171. A 
brief summary of the relevant material follows, with the differences for counting irreducible 
bridges only described. 

One starts off with a dividing line on a square grid, with initially ali the lattice~points 
to the right. One then moves the dividing line one lattice point at a time to the right, for 
a total of (W + 1) x ( L  + 1) moves. At each of these moves, a generating function (a 
polynomial kept to some degree D) for each possible boundary condition is updated. When 
appropriate boundary conditions are met, the total is accumulated into a resultant generating 
function. An example of this process is given in figure 2, mid-way through processing the 
lattice. One permanent boundary condition is that all walks must touch the end of the grid 
to ensure uniqueness in the horizontal direction. 

Figure 2. Example of the transfer matrix and finite lattice method of counting bridges. The left 
boundary is the original boundary. The right boundary shows how a new bond (the one that is 
different in the two pictures) could be added after adding in an extra site. There are three ways 
of moving the boundary. Two are shown here: the third i s to  have no extra bond added. Note 
that the information to the left of the boundary is never stored. just the boundary itself and the 
number of bonds to the left. 

By keeping the line as close to vertical as possible, the boundary is restricted to crossing 
a maximum of W + 2 bonds. The computational complexity in terms of both time and 
memory of the counting is proportional to a polynomial times 3w. Thus it is desired to 
keep W as small as possible. 

In [7] two variable generating functions were used, as then use could be made of the 
symmetry of the horizontal and vertical directions to double the number of terms calculated. 
For calculating irreducible bridges, this is no longer possible, as there are two distinct 
directions: parallel to the direction of the ‘bridge’, and perpendicular to it. For this reason, 
the generating function stored is only a polynomial in one variable. This reduces the storage 
requirements significantly, and allows larger values of W to be used than in the SAW case, 
which partially compensates for the loss of terms from the use of symmetry. 
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This process is performed for values of W ranging from 0 up to some maximum (10 
or 11 in the case of this paper), and with two different boundary conditions: firstly with 
walks that can only start or finish on the top of the grid, and secondly with the boundary 
condition that walks can only start of finish on either side of the grid. By subtracting twice 
the former from the latter, one ends up with the generating function for walks starting at 
one end and finishing at the other. 

We find it more efficient to carry out the above calculations in two steps, one for each 
boundary condition. The alternative involves a flag tracking the last boundary encountered, 
and requires up to twice as much storage as the method used, for little time saving. With 
the transfer matrix method, memory is usually a larger problem than time. 

This calculation gives all bridges. We now define a generating function X*(u, z )  where 
the power of U gives the number of bridges from one side to the other of a lattice of width 
given by the power of z.  This can be convertzd into the equivalent generating function for 
irreducible walks X(u, z )  efficiently via the relation 

X(u,z) = x*~U,Z)/[l+UzX*(U,Z)1 (3.1) 

using an expansion in z ,  This will be accurate up to the same width and length as X*(u,  z) ,  
and should be truncated after this. ~. 

Then, a new generating function X ( u )  = X ( u ,  I) will be formed. This will have 
coefficients which provide a lower bound on the number of irreducible bridges fitting into 
the grid. Thus the coefficients in uX(u) can be used in (2.4) as the coefficients S,,. A lower 
bound for p can then be obtained. The U multiplying u X ( u )  &to account for the extra step 
required at  the start of the walk to keep the notation the same as used in [5 ] .  

A merely implementational difficulty is the fact that many of the numbers involved are 
large, and it is important to know them exactly. These numbers can become too large to be 
efficiently stored or handled by the machine. They also increase the memory requirements. 
The normal solution of using modular arithmetic, and repeating the calculations for various 
primes was used. This is easy since no divisions ever need to be done. 

The calculation was performed up to widths of 11, and lengths of SO. Eight primes 
were used in the first stage (obtaining X*), and 9 were used in obtaining X from X*. 

This process was repeated to widths of 10 and lengths of 124, with ten moduli to gain 
some extra terms without using too much memory and time. 

4. Correction terms 

The values obtained for S, by the method above for a maximum grid width of W and a 
sufficiently large value of L and D (hereafter assumed) will be exact up to but not including 
bridges of total length 3(W + 1) + 2 + 1 = 3W + 6. This will be caused by the bridge 
going straight up to W + 2, across one, down W + 1, across one and up W + 1 ,  and by its 
mirror image. Thus the first incorrect value will be out by 2. 

A lower bound on the correction terms for width W + 1 will be given by twice the 
number of bridges formed by a staircase going up to the right, then down, then up again. 
The factor of two is again due to the fact that they can go to the left or the right. 

Each of the 3 W +4 possible sites for adding a number of horizontal bonds will provide 
a factor of 1 + U  + u2 + U' + . . . = 1/[1 - U] for this correction generating function, for a 
total of 
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Table 1. Number of irreducible bridges (n G 40) or a lower bound thereof [n =. 40). plus 
induced lower bound on the SAW connenive constant (6). 

- 
n U" S" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
45 
50 
88 
60 
68 
70 

0 
1 
2 
2 
2 
2 
4 

IO 
26 
56 

118 
256 
586 

1386 
3262 
7690 

18206 
43520 

104892 
~ , 254040 

, 614440 
1505906 
3687276 
9061 272 

22341 940 
55239616 

I36 930354 
340232934 
047283 502 

2114382206 
5286 567 268 

13241€60012 
33222895 410 
83486821 126 

210 106733840 
529501 940578 

I336 175 748 624 
3375961 081 570 
8539629649 384 

21625309327 132 
54820398 745474 

5820318 155 157312 
630290451 525202906 

69343967 886914517780 
7719762 198096O59791214 

863 967 704 69 1674 7 13 386 386 
96310 546 601 365 415 953 964424 

- 
1.00000 
2.000 00 
2.269 53 
2.359 30 
2.39246 
2.41778 
2.441 60 
2.46443 
2.48240 
2.49631 
250747 
2.51694 
2.52525 
2.53251 
2.53886 
2.51445 
2.549 43 
2.553 90 
2.55793 
2.561 59 
2.564 92 
2.867 97 
2.570 76 
2.573 34 
2.575 72 
2.57794 
2.579 99 

2.58370 
2.58539 
2.58696 
2.58845 
2.58985 
2.591 17 

. 2.59242 
2.593 60 

2.595 79 
2.59681 
2.59778 
2.602 00 
2.60541 
2.60822 
2.61058 
2.61259 
2.6 14 29 

zssi 91 

2.594 73 

78 2 615 74 
80 I 14623S958 4 . 2  552486626 315028232 2.61694 
85 95 I?? 595 25241324 81 1302 335 904414 ,2.61778 
90 9353 .?93218092 323606905 888547 359200 2.61b40 
95 2 618 87 

IO0 2 619 17 

10 601 ?68 097 334 3 I 8  639 5 I4 026 656 

OM 943093 517 I00736816527 879 329091 430 
86958 IO9 694 998 794 027 177 768 234 060 590 918 
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Table 1. (continued) 

n S" !& 
105 8261 450207 357657 977290 3100896j579l zS4798 " '  2.6i9 51 ' 
110 779 111 239 518 194561 637275214705 111 280361 530 2.61971 
115 73 029 264 454070 005 969 830 070 906 741 808 537 647 294 2.619 87 
120 6 810768 067 294571 953 459 572425 256758 676,211 656394 2.61999 
124 255630454763564394929879331 890351 601 304148 172618 2.62006 

, ' 

This gives the exact correction term to the second incorrect value: 6 W  + 8, or in this 
particular case 74 for (FV = 11). The next correction term misses bulges in the vertical 
lines. 

These two correction terms make t&e results exact up to and including 3 W + 7. 
Adding the generating function in (4.1) makes adifference of  about one part in a billion 

to the final lower bound, so correction'terms have not been pursued further. 

5. Results 

The first set of the calculations (width 11) took a few days and about 90 megabytes of 
memory. They were performed on an JBM RS6000/550 with 128 MB of memory. 

The second set (width 10, longer series) took about a week of CPU time in a slower 
IBM RS6000/530 with 192 MB of memory. 

The numbers used for S, were the values from the width 11 calculation up to the eighty 
first term, and values from the width ten run thereafter. Correction terms were included, 
though they did not make a significant difference. As a result, exact values of S, were used 
up to the fortieth coefficient, and a lower bound thereafter. 

The values of b,, from (2.2) and (2.4) were calculated via a small Mathematica program. 
A table of these values is given in table 1. 

This gives a new lower bound of 2.62. This is to be compared with the best numerical 
estimate [7] of 2.638 15853. 

Acknowledgments 

We would like to thank Ian G Enting for his contribution in developing the finite lattice 
method. One of us (ARC) would like to thank the A 0 Capell, Wyselaskie and Daniel 
Curdie scholarships. The other (AJG) would like to thank the ARC for financial support. 
Some of these calculations were performed on an IBM RS6000/550 with 128 Mbytes of 
memory, kindly loaned by IBM Australia. 

References 

[I]  W3kefield A J 1951 PhD thesis Oxford University 
[2] Fisher M E and S y k a  M F 1959 Phys. Rev. 114 45-58 
131 KeSten H 1963 f. Moth. Phys. 4 960-9 
I41 Beyer W E and Wells M €3 1972 1. Comb. Theory A 13 176 
[SI Guttmann A J 1983 1. P h y .  A: Math Gen 16 2233-8 
161 Alm S E 1992 Private communication 
[7] Conway A R, Enting I G and Guttmann A J 1993 f. Phys. A: Math. Gen. to be published 
[8! Hammenley J 1957 Pwc .  Camb. Phil. Soc. 52 642 


